Brain emotional learning based Brain Computer Interface
نویسندگان
چکیده
A brain computer interface (BCI) enables direct communication between a brain and a computer translating brain activity into computer commands using preprocessing, feature extraction and classification operations. Classification is crucial as it has a substantial effect on the BCI speed and bit rate. Recent developments of brain–computer interfaces (BCIs) bring forward some challenging problems to the machine learning community, of which classification of time-varying electrophysiological signals is a crucial one. Constructing adaptive classifiers is a promising approach to deal with this problem. In this paper, we introduce adaptive classifiers for classify electroencephalogram (EEG) signals. The adaptive classifier is brain emotional learning based adaptive classifier (BELBAC), which is based on emotional learning process. The main purpose of this research is to use a structural model based on the limbic system of mammalian brain, for decision making and control engineering applications. We have adopted a network model developed by Moren and Balkenius, as a computational model that mimics amygdala, orbitofrontal cortex, thalamus, sensory input cortex and generally, those parts of the brain thought responsible for processing emotions. The developed method was compared with other methods used for EEG signals classification (support vector machine (SVM) and two different neural network types (MLP, PNN)). The result analysis demonstrated an efficiency of the proposed approach.
منابع مشابه
A review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملUsing BELBIC based optimal controller for omni-directional threewheel robots model identified by LOLIMOT
In this paper, an intelligent controller is applied to control omni-directional robots motion. First, the dynamics of the three wheel robots, as a nonlinear plant with considerable uncertainties, is identified using an efficient algorithm of training, named LoLiMoT. Then, an intelligent controller based on brain emotional learning algorithm is applied to the identified model. This emotional l...
متن کاملSelecting and Extracting Effective Features of SSVEP-based Brain-Computer Interface
User interfaces are always one of the most important applied and study fields of information technology. The development and expansion of cognitive science studies and functionalization of its tools such as BCI1, as well as popularization of methods such as SSVEP2 to stimulate brain waves, have led to using these techniques every day, especially in appropriate solutions for physically and menta...
متن کاملA Study of Various Feature Extraction Methods on a Motor Imagery Based Brain Computer Interface System
Introduction: Brain Computer Interface (BCI) systems based on Movement Imagination (MI) are widely used in recent decades. Separate feature extraction methods are employed in the MI data sets and classified in Virtual Reality (VR) environments for real-time applications. Methods: This study applied wide variety of features on the recorded data using Linear Discriminant Analysis (LDA) classifie...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کامل